Severity: Warning
Message: file_get_contents(https://...@c&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Magnetite (FeO) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (FeO@C) were developed. The impact of FeO@C with varying FeO mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that FeO@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of FeO@C increased with the rise in FeO content. Furthermore, High-throughput pyrosequencing illustrated that FeO@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that FeO@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that FeO@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.122121 | DOI Listing |