98%
921
2 minutes
20
Purpose: Selecting the better techniques to harbor optimal motion management, either a stereotactic linear accelerator delivery using TrueBeam (TBX) or magnetic resonance-guided gated delivery using MRIdian (MRG), is time-consuming and costly. To address this challenge, we aimed to develop a decision-supporting algorithm based on a combination of deep learning-generated dose distributions and clinical data.
Materials And Methods: We retrospectively analyzed 65 patients with liver or pancreatic cancer who underwent both TBX and MRG simulations and planning process. We trained three-dimensional U-Net deep learning models to predict dose distributions and generated dose volume histograms (DVHs) for each system. We integrated predicted DVH metrics into a Bayesian network (BN) model incorporating clinical data.
Results: The MRG prediction model outperformed the TBX model, demonstrating statistically significant superiorities in predicting normalized dose to the planning target volume (PTV) and liver. We developed a final BN prediction model integrating the predictive DVH metrics with patient factors like age, PTV size, and tumor location. This BN model an area under the receiver operating characteristic curve index of 83.56%. The decision tree derived from the BN model showed that the tumor location (abutting vs. apart of PTV to hollow viscus organs) was the most important factor to determine TBX or MRG. It provided a potential framework for selecting the optimal radiation therapy (RT) system based on individual patient characteristics.
Conclusion: We demonstrated a decision-supporting algorithm for selecting optimal RT plans in upper gastrointestinal cancers, incorporating both deep learning-based dose prediction and BN-based treatment selection. This approach might streamline the decision-making process, saving resources and improving treatment outcomes for patients undergoing RT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729311 | PMC |
http://dx.doi.org/10.4143/crt.2024.333 | DOI Listing |
Comput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.
J Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
Front Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDF