Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Several (inter)national longitudinal dementia observational datasets encompassing demographic information, neuroimaging, biomarkers, neuropsychological evaluations, and muti-omics data, have ushered in a new era of potential for integrating machine learning (ML) into dementia research and clinical practice. ML, with its proficiency in handling multi-modal and high-dimensional data, has emerged as an innovative technique to facilitate early diagnosis, differential diagnosis, and to predict onset and progression of mild cognitive impairment and dementia. In this review, we evaluate current and potential applications of ML, including its history in dementia research, how it compares to traditional statistics, the types of datasets it uses and the general workflow. Moreover, we identify the technical barriers and challenges of ML implementations in clinical practice. Overall, this review provides a comprehensive understanding of ML with non-technical explanations for broader accessibility to biomedical scientists and clinicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293066 | PMC |
http://dx.doi.org/10.1186/s13195-024-01540-6 | DOI Listing |