A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial intelligence-based personalized clinical decision-making for patients with localized prostate cancer: surgery versus radiotherapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Surgery and radiotherapy are primary nonconservative treatments for prostate cancer (PCa). However, personalizing treatment options between these treatment modalities is challenging due to unclear criteria. We developed an artificial intelligence (AI)-based model that can identify patients with localized PCa who would benefit more from either radiotherapy or surgery, thereby providing personalized clinical decision-making.

Material And Methods: Data from consecutive patients with localized PCa who received radiotherapy or surgery with complete records of clinicopathological variables and follow-up results in 12 registries of the Surveillance, Epidemiology, and End Results database were analyzed. Patients from 7 registries were randomly assigned to training (TD) and internal validation datasets (IVD) at a 9:1 ratio. The remaining 5 registries constituted the external validation dataset (EVD). TD was divided into training-radiotherapy (TRD) and training-surgery (TSD) datasets, and IVD was divided into internal-radiotherapy (IRD) and internal-surgery (ISD) datasets. Six models for radiotherapy and surgery were trained using TRD and TSD to predict radiotherapy survival probability (RSP) and surgery survival probability (SSP), respectively. The models with the highest concordance index (C-index) on IRD and ISD were chosen to form the final treatment recommendation model (FTR). FTR recommendations were based on the higher value between RSP and SSP. Kaplan-Meier curves were generated for patients receiving recommended (consistent group) and nonrecommended treatments (inconsistent group), which were compared using the log-rank test.

Results: The study included 118 236 patients, categorized into TD (TRD: 44 621; TSD: 41 500), IVD (IRD: 4949; ISD: 4621), and EVD (22 545). Both radiotherapy and surgery models accurately predicted RSP and SSP (C-index: 0.735-0.787 and 0.769-0.797, respectively). The consistent group exhibited higher survival rates than the inconsistent group, particularly among patients not suitable for active surveillance (P < .001).

Conclusion: FTR accurately identifies patients with localized PCa who would benefit more from either radiotherapy or surgery, offering clinicians an effective AI tool to make informed choices between these 2 treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630763PMC
http://dx.doi.org/10.1093/oncolo/oyae184DOI Listing

Publication Analysis

Top Keywords

radiotherapy surgery
16
patients localized
12
personalized clinical
8
prostate cancer
8
localized pca
8
datasets ivd
8
survival probability
8
rsp ssp
8
consistent group
8
inconsistent group
8

Similar Publications