Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Various applications related to glucose catalysis have led to the development of functional nanozymes with glucose oxidase (GOX)-like activity. However, the unsatisfactory catalytic activity of nanozymes is a major challenge for their practical applications due to their inefficient hydrogen and electron transfer. Herein, we present the synthesis of AuFe/polydopamine (PDA) superparticles that exhibit photothermal-enhanced GOX-like activity. Experimental investigations and theoretical calculations reveal that the glucose oxidation process catalyzed by AuFe/PDA follows an artificial-cofactor-mediated hydrogen atom transfer mechanism, which facilitates the generation of carbon-centered radical intermediates. Rather than depending on charged Au surfaces for thermodynamically unstable hydride transfer, Fe(III)-coordinated PDA with abundant amino and phenolic hydroxyl groups serves as cofactor mimics, facilitating both hydrogen atom and electron transfer in the catalytic process. Finally, leveraging the photothermal-enhanced GOX-like and catalase-like activities of AuFe/PDA, we establish a highly sensitive and accurate point-of-care testing blood glucose determination with exceptional anti-jamming capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02594 | DOI Listing |