A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Definition of the effector landscape across 13 phytoplasma proteomes with LEAPH and EffectorComb. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phytoplasma' genus, a group of fastidious phloem-restricted bacteria, can infect a wide variety of both ornamental and agro-economically important plants. Phytoplasmas secrete effector proteins responsible for the symptoms associated with the disease. Identifying and characterizing these proteins is of prime importance for expanding our knowledge of the molecular bases of the disease. We faced the challenge of identifying phytoplasma's effectors by developing LEAPH, a machine learning ensemble predictor composed of four models. LEAPH was trained on 479 proteins from 53 phytoplasma species, described by 30 features. LEAPH achieved 97.49% accuracy, 95.26% precision and 98.37% recall, ensuring a low false-positive rate and outperforming available state-of-the-art methods. The application of LEAPH to 13 phytoplasma proteomes yields a comprehensive landscape of 2089 putative pathogenicity proteins. We identified three classes according to different secretion models: 'classical', 'classical-like' and 'non-classical'. Importantly, LEAPH identified 15 out of 17 known experimentally validated effectors belonging to the three classes. Furthermore, to help the selection of novel candidates for biological validation, we applied the Self-Organizing Maps algorithm and developed a Shiny app called EffectorComb. LEAPH and the EffectorComb app can be used to boost the characterization of putative effectors at both computational and experimental levels, and can be employed in other phytopathological models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287381PMC
http://dx.doi.org/10.1093/nargab/lqae087DOI Listing

Publication Analysis

Top Keywords

phytoplasma proteomes
8
leaph effectorcomb
8
three classes
8
leaph
7
definition effector
4
effector landscape
4
landscape phytoplasma
4
proteomes leaph
4
effectorcomb phytoplasma'
4
phytoplasma' genus
4

Similar Publications