Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The narrow intersection between the cornea and conjunctiva, otherwise known as the limbus, is purported to harbor stem cells (SCs) that replenish the ocular surface epithelium throughout life. Damage to this site or depletion of its SCs can have dire consequences for eye health and vision. To date, various SC and keratin proteins have been used to identify the limbus, however, none could definitively mark its boundaries. Herein, we use the mouse as a model system to investigate whether structural and phenotypic features can be used to define the limbus and its boundaries with adjacent tissues. We demonstrate that differentially aligned blood and lymphatic vessels, intraepithelial nerves, and basal epithelial cellular and nuclei dimensions can be used as structural landmarks of the limbus. Identification of these features enabled approximation of the limbal expanse, which varied across distinct ocular surface quadrants, with the superior nasal and inferior temporal limbus being the widest and narrowest, respectively. Moreover, label-retaining SCs were unevenly distributed across the ocular circumference, with increased numbers in the superior temporal and inferior temporal moieties. These findings will heighten our current understanding of the SC niche, be beneficial for accurately predicting SC distribution to improve their isolation and devising efficacious cell therapies, and importantly, aid the ongoing search for novel SC markers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465172 | PMC |
http://dx.doi.org/10.1093/stcltm/szae055 | DOI Listing |