98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jdv.20254 | DOI Listing |
Rep Pract Oncol Radiother
August 2025
Department of Dermatology and Venereology, Poznan University of Medical Sciences, Poznań, Poland.
Currently, photodynamic therapy (PDT) is widely used, mainly in treatment of actinic keratosis (AK), especially grades I and II following the Olsen classification. The main side effects include burning, stinging, and pain during irradiation. Alternative protocols include daylight PDT (dPDT), which uses sunlight instead of artificial light after applying a photosensitizer.
View Article and Find Full Text PDFPhotochem Photobiol
September 2025
Photobiology Applied to Health (PhotoBioS Lab), University of Vale do Paraíba, São Paulo, Brazil.
Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.
View Article and Find Full Text PDFJ Control Release
September 2025
Grenoble Alpes University, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700 La Tronche, France. Electronic address:
Resistance to chemotherapy remains a significant challenge for the treatment of pancreatic cancer. In addition to conventional therapeutic strategies, photodynamic therapy (PDT) has emerged as a compelling alternative for pancreatic cancer as it synergizes with various chemotherapeutics such as irinotecan, and oxaliplatin. However, the exact mechanisms by which PDT overcomes oxaliplatin resistance remains elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Departamento de Física - FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
We synthesized europium-doped gadolinium fluoride (GdF:Eu) scintillating nanoparticles conjugated to methylene blue (MB) for singlet oxygen (O) generation in X-ray-induced photodynamic therapy (X-PDT). The impact of MB conjugation on GdF:Eu nanoparticles (GdF@B) was analyzed, including size, polydispersity, and surface charge. Time-resolved photoluminescence analysis demonstrated that binding of MB to the nanoparticle surface is essential for enabling efficient resonant energy transfer (ET) from the GdF:Eu core to the MB molecules.
View Article and Find Full Text PDFInt J Pharm
September 2025
Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078 Telangana, India. Electronic address:
Conventional cancer therapies, including surgery, chemotherapy, and radiotherapy, have achieved considerable clinical success but remain constrained by systemic toxicity, poor selectivity, drug resistance, and tumor recurrence. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as minimally invasive alternatives; however, their clinical translation is hindered by hypoxic tumor microenvironments, limited light penetration, and intratumoral heterogeneity. Recent advances in multifunctional nanoplatforms seek to overcome these limitations by integrating PTT and PDT with chemotherapy and immunotherapy, thereby enhancing therapeutic efficacy through synergistic mechanisms.
View Article and Find Full Text PDF