Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1111/jdv.20254DOI Listing

Publication Analysis

Top Keywords

conventional pdt
4
pdt versus
4
versus pdt
4
pdt session
4
session diclofenac
4
diclofenac gel
4
gel severe
4
severe skin
4
skin field
4
field cancerization
4

Similar Publications

Currently, photodynamic therapy (PDT) is widely used, mainly in treatment of actinic keratosis (AK), especially grades I and II following the Olsen classification. The main side effects include burning, stinging, and pain during irradiation. Alternative protocols include daylight PDT (dPDT), which uses sunlight instead of artificial light after applying a photosensitizer.

View Article and Find Full Text PDF

Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.

View Article and Find Full Text PDF

Resistance to chemotherapy remains a significant challenge for the treatment of pancreatic cancer. In addition to conventional therapeutic strategies, photodynamic therapy (PDT) has emerged as a compelling alternative for pancreatic cancer as it synergizes with various chemotherapeutics such as irinotecan, and oxaliplatin. However, the exact mechanisms by which PDT overcomes oxaliplatin resistance remains elusive.

View Article and Find Full Text PDF

Enhanced Cancer Radiosensitization via Energy Transfer from Eu-Doped GdF Nanoparticles to Methylene Blue in X-ray Photodynamic Therapy.

ACS Appl Mater Interfaces

September 2025

Departamento de Física - FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.

We synthesized europium-doped gadolinium fluoride (GdF:Eu) scintillating nanoparticles conjugated to methylene blue (MB) for singlet oxygen (O) generation in X-ray-induced photodynamic therapy (X-PDT). The impact of MB conjugation on GdF:Eu nanoparticles (GdF@B) was analyzed, including size, polydispersity, and surface charge. Time-resolved photoluminescence analysis demonstrated that binding of MB to the nanoparticle surface is essential for enabling efficient resonant energy transfer (ET) from the GdF:Eu core to the MB molecules.

View Article and Find Full Text PDF

Multifunctional nanoplatforms for combined photothermal and photodynamic therapy: Tumor-responsive strategies for enhanced precision.

Int J Pharm

September 2025

Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078 Telangana, India. Electronic address:

Conventional cancer therapies, including surgery, chemotherapy, and radiotherapy, have achieved considerable clinical success but remain constrained by systemic toxicity, poor selectivity, drug resistance, and tumor recurrence. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as minimally invasive alternatives; however, their clinical translation is hindered by hypoxic tumor microenvironments, limited light penetration, and intratumoral heterogeneity. Recent advances in multifunctional nanoplatforms seek to overcome these limitations by integrating PTT and PDT with chemotherapy and immunotherapy, thereby enhancing therapeutic efficacy through synergistic mechanisms.

View Article and Find Full Text PDF