A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AI supported detection of cerebral multiple sclerosis lesions decreases radiologic reporting times. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Multiple Sclerosis (MS) is a common autoimmune disease of the central nervous system. MRI plays a crucial role in diagnosing as well as in disease and treatment monitoring. Therefore, evaluation of cerebral MRI of MS patients is part of daily clinical routine. A growing number of companies offer commercial software to support the reporting with automated lesion detection. Aim of this study was to evaluate the effect of such a software with AI supported lesion detection to the radiologic reporting.

Method: Four radiologist each counted MS-lesions in MRI examinations of 50 patients separated by the locations periventricular, cortical/juxtacortical, infrantentorial and unspecific white matter. After at least six weeks they repeated the evaluation, this time using the AI based software mdbrain for lesion detection. In both settings the required time was documented. Further the radiologists evaluated follow-up MRI of 50 MS-patients concerning new and enlarging lesions in the same manner.

Results: To determine the lesion-load the average reporting time decreased from 286.85 sec to 196.34 sec (p > 0.001). For the evaluation of the follow-up images the reporting time dropped from 196.17 sec to 120.87 sec (p < 0.001). The interrater reliabilities showed no significant differences for the determination of lesion-load (0.83 without vs. 0.8 with software support) and for the detection of new/enlarged lesions (0.92 without vs. 0.82 with software support).

Conclusion: For the evaluation of MR images of MS patients, an AI-based support for image-interpretation can significantly decreases reporting times.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2024.111638DOI Listing

Publication Analysis

Top Keywords

lesion detection
12
multiple sclerosis
8
reporting time
8
supported detection
4
detection cerebral
4
cerebral multiple
4
sclerosis lesions
4
lesions decreases
4
decreases radiologic
4
reporting
4

Similar Publications