A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Three-Dimensional Reconstruction and Visualization of Underwater Bridge Piers Using Sonar Imaging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The quality of underwater bridge piers significantly impacts bridge safety and long-term usability. To address limitations in conventional inspection methods, this paper presents a sonar-based technique for the three-dimensional (3D) reconstruction and visualization of underwater bridge piers. Advanced MS1000 scanning sonar is employed to detect and image bridge piers. Automated image preprocessing, including filtering, denoising, binarization, filling, and morphological operations, introduces an enhanced wavelet denoising method to accurately extract the foundation contour coordinates of bridge piers from sonar images. Using these coordinates, along with undamaged pier dimensions and sonar distances, a model-driven approach for a 3D pier reconstruction algorithm is developed. This algorithm leverages multiple sonar data points to reconstruct damaged piers through multiplication. The Visualization Toolkit (VTK) and surface contour methodology are utilized for 3D visualization, enabling interactive manipulation for enhanced observation and analysis. Experimental results indicate a relative error of 13.56% for the hole volume and 10.65% for the spalling volume, demonstrating accurate replication of bridge pier defect volumes by the reconstructed models. Experimental validation confirms the method's accuracy and effectiveness in reconstructing underwater bridge piers in three dimensions, providing robust support for safety assessments and contributing significantly to bridge stability and long-term safety assurance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280486PMC
http://dx.doi.org/10.3390/s24144732DOI Listing

Publication Analysis

Top Keywords

bridge piers
24
underwater bridge
16
bridge
9
three-dimensional reconstruction
8
reconstruction visualization
8
visualization underwater
8
piers sonar
8
piers
7
sonar
5
visualization
4

Similar Publications