Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Gaucher disease (GD) is a lysosomal storage disorder caused by mutations in the gene, leading to β-glucocerebrosidase deficiency and glucosylceramide accumulation. : We analyzed short- and long-term dynamics of lyso-glucosylceramide (lyso-Gb1) in a large cohort of GD patients undergoing enzyme replacement therapy (ERT). : Eight-years analysis of lyso-Gb1 revealed statistically insignificant variability in the biomarker across the years and relatively high individual variability in patients' results. GD type 1 (GD1) patients exhibited higher variability compared to GD type 3 (GD3) patients (coefficients of variation: 34% and 23%, respectively; -value = 0.0003). We also investigated the short-term response of the biomarker to enzyme replacement therapy (ERT), measuring lyso-Gb1 right before and 30 min after treatment administration. We tested 20 GD patients (16 GD1, 4 GD3) and observed a rapid and significant reduction in lyso-Gb1 levels (average decrease of 17%; -value < 0.0001). This immediate response reaffirms the efficacy of ERT in reducing substrate accumulation in GD patients but, on the other hand, suggests the biomarker's instability between the infusions. : These findings underscore lyso-Gb1's potential as a reliable biomarker for monitoring efficacy of treatment. However, individual variability and dry blood spot (DBS) testing limitations urge a further refinement in clinical application. Our study contributes valuable insights into GD patient management, emphasizing the evolving role of biomarkers in personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275231PMC
http://dx.doi.org/10.3390/biom14070842DOI Listing

Publication Analysis

Top Keywords

enzyme replacement
12
replacement therapy
12
patients undergoing
8
undergoing enzyme
8
therapy ert
8
individual variability
8
patients
6
lyso-gb1
5
long- short-term
4
short-term glucosphingosine
4

Similar Publications

Autosomal recessive renal tubular dysgenesis (RTD) is a rare genetic disorder caused by defects in the renin-angiotensin system, with the most common outcomes being foetal or neonatal death from renal failure, pulmonary hypoplasia and/or refractory arterial hypotension. A small proportion of patients survive past the neonatal period. We present the case of a toddler with RTD due to compound heterozygous variants in the gene that codes for ACE, who has not required renal replacement therapy to date and in whom fludrocortisone has achieved electrolyte and acid/base balance.

View Article and Find Full Text PDF

Gaucher's disease (GD) is the most common lysosomal storage disorder inherited in an autosomal recessive pattern. It occurs due to a deficiency of the enzyme glucocerebrosidase owing to a mutation in the acid-β-glucosidase () gene resulting in accumulation of glucocerebrosides in lysosomes of cells. It presents with abdominal distension, hepatosplenomegaly, developmental delay, pancytopenia, neurological manifestations and bone diseases.

View Article and Find Full Text PDF

Casein kinase 1 (CK1) family members are crucial for ER-Golgi trafficking, calcium signalling, DNA repair, transfer RNA (tRNA) modifications, and circadian rhythmicity. Whether and how substrate interactions and kinase autophosphorylation contribute to CK1 plasticity remains largely unknown. Here, we undertake a comprehensive phylogenetic, cellular, and molecular characterization of budding yeast CK1 Hrr25 and identify human CK1 epsilon (CK1ϵ) as its ortholog.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.

View Article and Find Full Text PDF

Reconstruction of a resource balance analysis model of Clostridium thermocellum examines the metabolic cost of glycolytic and cellulosome enzymes.

Metab Eng

September 2025

Department of Chemical Engineering, the Pennsylvania State University, University Park, Pennsylvania, USA; Center for Bioenergy Innovation, Oak Ridge, Tennessee, USA. Electronic address:

Clostridium thermocellum is an increasingly well-studied organism with considerable advantages for consolidated bioprocessing towards ethanol production. Here, a genome-scale resource balance analysis (RBA) model of C. thermocellum, ctRBA, is reconstructed based on a recently published stoichiometric model (iCTH669), global proteomics, and C MFA datasets to analyze proteome allocation and the burden imposed on metabolism with regard to ethanol yield and titer.

View Article and Find Full Text PDF