Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hereditary spherocytosis (HS) is a membranopathy that impacts the vertical junctions between the cytoskeleton and the plasma membrane of erythrocytes. The gold standard method for diagnosing it is osmotic gradient ektacytometry (OGE). However, access to this technique is scarce. We have devised a straightforward approach utilizing flow cytometry to quantify variations in an osmotic gradient, relying on FSC-H/SSC-H patterns. We studied 14 patients (9 pediatric, 5 adults) and 54 healthy controls (16 pediatric, 38 adults). After assessing the behavior of the samples in several osmolar gradients we selected for the study the 176, 308, and 458 mOsm/kg levels as hypo-osmolar, iso-osmolar, and hyper-osmolar references. We then selected the iso-osmolar point for assessment to determine its efficacy in discriminating between patient and control groups using a receiver operating characteristic curve. In the pediatric group, the area under the curve (AUC) was 1.0, indicating 100% sensitivity and 93.3% specificity. Conversely, in the adult group, the AUC was 0.98, with 80% sensitivity and 90.9% specificity. We introduce a method that is easily replicable and demonstrates high sensitivity and specificity. This technique could prove valuable in the diagnosis of spherocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274888PMC
http://dx.doi.org/10.3390/biomedicines12071607DOI Listing

Publication Analysis

Top Keywords

flow cytometry
8
osmotic gradient
8
pediatric adults
8
cytometry accessible
4
accessible method
4
method evaluate
4
evaluate diagnostic
4
diagnostic osmotic
4
osmotic changes
4
changes patients
4

Similar Publications

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.

View Article and Find Full Text PDF

The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.

View Article and Find Full Text PDF

There is no vaccine for severe malaria. STEVOR antigens on the surface of -infected red blood cells are implicated in severe malaria and are targeted by neutralizing antibodies, but their epitopes remain unknown. Using computational immunology, we identified highly immunogenic overlapping B- and T-cell epitopes (referred to as multiepitopes, 7-27 amino acids) in the semiconserved domain of four STEVORs linked with severe malaria and clinical immunity.

View Article and Find Full Text PDF

NSUN6 Promotes Gastric Cancer Progression by Stabilizing CEBPZ mRNA in a mC-Dependent Manner.

Appl Biochem Biotechnol

September 2025

Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.

Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.

View Article and Find Full Text PDF