A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Correlation coefficients between normal wiggly hesitant fuzzy sets and their applications. | LitMetric

Correlation coefficients between normal wiggly hesitant fuzzy sets and their applications.

Sci Rep

Air Traffic Control and Navigation College, Air Force Engineering University, Xi'an, 710051, People's Republic of China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The multi-criteria decision-making (MCDM) field has long sought tools capable of adeptly capturing the intricacies of human decision-making amidst uncertainty. Hesitant fuzzy sets (HFS) have become a cornerstone in the MCDM field due to their ability to capture the intricacies of human decision-making under uncertainty. Nonetheless, we identified a significant gap in traditional HFS formulations, which often fail to fully harness the nuanced and implicit preferences of decision-makers (DMs). This shortcoming can lead to suboptimal decision outcomes in complex and uncertain environments. We introduce the normal wiggly hesitant fuzzy set (NWHFS), a novel construct that encapsulates both explicit and implicit preferences within a more representative framework. This study pioneers the development of new correlation coefficients for NWHFSs, offering a robust quantitative measure to elucidate the intricate relationships between variables. Our findings demonstrate that NWHFSs significantly enhance the MCDM process, providing a nuanced perspective that traditional HFS models cannot match. The proposed correlation coefficients not only reveal the concealed preferences of DMs but also broaden the decision-making spectrum, offering a more profound understanding of the relationships between alternatives and criteria. We illustrate the superiority of our approach through comparative analysis with existing methods, highlighting its ability to discern subtleties that other models overlook. Moreover, we integrate NWHFSs into clustering analysis, showcasing their potential to classify data sources with shared attributes effectively. This integration is particularly noteworthy for its ability to navigate complex datasets, offering a new dimension in data mining and resource retrieval. In essence, our study redefines the MCDM paradigm by introducing NWHFSs and their correlation coefficients, setting a new standard for decision-making accuracy and insight. The implications of our work extend beyond theory, offering practical solutions to real-world decision-making challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282098PMC
http://dx.doi.org/10.1038/s41598-024-67961-3DOI Listing

Publication Analysis

Top Keywords

correlation coefficients
16
hesitant fuzzy
12
normal wiggly
8
wiggly hesitant
8
fuzzy sets
8
mcdm field
8
intricacies human
8
human decision-making
8
traditional hfs
8
implicit preferences
8

Similar Publications