A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Forest floor environment overrules global change treatment effects on understorey communities in a mesocosm experiment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light availability profoundly influences plant communities, especially below dense tree canopies in forests. Canopy disturbances, altering forest floor light conditions, together with other environmental changes such as climate change, nitrogen deposition and legacy effects from previous land-use will simultaneously impact forest understorey communities. Yet, knowledge on the individual effects of these drivers and their potential interactions remains scarce. Here we performed a forest mesocosm experiment to assess the influence of warming, illumination (simulating canopy opening), nitrogen deposition and soil land-use history (comparing ancient and post-agricultural forest soil) on understorey community composition trajectories over a 7-year period. Strikingly, understorey communities primarily evolved in response to the deeply shaded ambient forest conditions, with experimental treatments exerting only secondary influences. The overruling trajectory steered all mesocosms towards slow-colonizing forest specialist communities dominated by spring geophytes with lower nutrient-demand. The illumination treatment and, to a lesser extent, warming and agricultural land-use legacy slowed down this trend by advancing fast-growing resource-acquisitive generalist species. Warm ambient temperatures induced thermophilization of plant communities in all treatments, including control plots, towards higher dominance of warm-adapted species. Nitrogen addition accelerated this thermophilization process and increased the community light-demand signature. Land-use legacy effects were limited in our study. Our findings underscore the essential role of limited light availability in preserving forest specialists in understorey communities and highlight the importance of maintaining a dense canopy cover to attenuate global change impacts. It is crucial to integrate this knowledge in forest management adaptation to global change, particularly in the face of increasing demands for wood and wood products and intensified natural canopy disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.17443DOI Listing

Publication Analysis

Top Keywords

understorey communities
16
global change
12
forest
9
forest floor
8
mesocosm experiment
8
light availability
8
plant communities
8
canopy disturbances
8
nitrogen deposition
8
legacy effects
8

Similar Publications