98%
921
2 minutes
20
I-III-VI type semiconductor nanocrystals (NCs) have attracted considerable attention due to their environmental friendly nature and large-scale tunable emission. Herein, we report the successful synthesis of full-spectrum (470 to 614 nm) Ag-In-Ga-Zn-S (AIGZS) NCs by precisely regulating the In/Ga ratios using a facile one-pot method. Intriguingly, the photoluminescence (PL) peak width exhibits a continuous narrowing trend with extended reaction time, ultimately reaching a full width at half-maximum (fwhm) of 34 nm for green AIGZS NCs. Furthermore, the exciton relaxation dynamics of AIGZS NCs were systematically investigated using time-resolved photoluminescence and femtosecond transient absorption spectroscopy. Remarkably, we successfully fabricated blue, green, and red quantum-dot light-emitting diodes (QLEDs), forecasting the potential of AIGZS NCs with high color purity for applications in full-spectrum QLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02454 | DOI Listing |
Nano Lett
August 2024
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China.
I-III-VI type semiconductor nanocrystals (NCs) have attracted considerable attention due to their environmental friendly nature and large-scale tunable emission. Herein, we report the successful synthesis of full-spectrum (470 to 614 nm) Ag-In-Ga-Zn-S (AIGZS) NCs by precisely regulating the In/Ga ratios using a facile one-pot method. Intriguingly, the photoluminescence (PL) peak width exhibits a continuous narrowing trend with extended reaction time, ultimately reaching a full width at half-maximum (fwhm) of 34 nm for green AIGZS NCs.
View Article and Find Full Text PDF