A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force () and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an00750fDOI Listing

Publication Analysis

Top Keywords

giant cancer
8
cancer cells
8
isosceles trapezoidal
8
trapezoidal spiral
8
spiral microchannel
8
cell populations
8
avg diameter
8
diameter μm
8
efficient separation
4
separation large
4

Similar Publications