A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The vast majority of somatic mutations in plants are layer-specific. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Plant meristems are structured organs consisting of distinct layers of stem cells, which differentiate into new plant tissue. Mutations in meristematic layers can propagate into large sectors of the plant. However, the characteristics of meristematic mutations remain unclear, limiting our understanding of the genetic basis of somaclonal phenotypic variation.

Results: Here, we analyse the frequency and distribution of somatic mutations in an apricot tree. We separately sequence the epidermis (developing from meristem layer 1) and the flesh (developing from meristem layer 2) of several fruits sampled across the entire tree. We find that most somatic mutations (> 90%) are specific to individual layers. Interestingly, layer 1 shows a higher mutation load than layer 2, implying different mutational dynamics between the layers. The distribution of somatic mutations follows the branching of the tree. This suggests that somatic mutations are propagated to developing branches through axillary meristems. In turn, this leads us to the unexpected observation that the genomes of layer 1 of distant branches are more similar to each other than to the genomes of layer 2 of the same branches. Finally, using single-cell RNA sequencing, we demonstrate that layer-specific mutations were only transcribed in the cells of the respective layers and can form the genetic basis of somaclonal phenotypic variation.

Conclusions: Here, we analyse the frequency and distribution of somatic mutations with meristematic origin. Our observations on the layer specificity of somatic mutations outline how they are distributed, how they propagate, and how they can impact clonally propagated crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267851PMC
http://dx.doi.org/10.1186/s13059-024-03337-0DOI Listing

Publication Analysis

Top Keywords

somatic mutations
28
distribution somatic
12
mutations
10
mutations meristematic
8
genetic basis
8
basis somaclonal
8
somaclonal phenotypic
8
analyse frequency
8
frequency distribution
8
developing meristem
8

Similar Publications