98%
921
2 minutes
20
Organic and biological materials are often chiral. Chiral polymers, as recent experiments indicate, facilitate spin-charge conversion: a charge current results in a spin polarization and vice versa, dubbed chirality-induced spin selectivity (CISS) and inverse CISS (ICISS). While CISS/ICISS in crystalline chiral systems such as tellurium can be understood in terms of their chirality- and spin-dependent band structure, such a picture becomes inapplicable to disordered chiral polymers, where carrier transport is via hopping rather than band conduction. Here, we develop a microscopic theory to describe CISS and ICISS in disordered chiral organics, in which chirality-induced geometric spin-orbit coupling leads to a purely geometric spin-dependent Berry phase in electron hops involving triads, whose orientations are dictated by the material's chirality. Our theory reveals a central role of spin-flip hopping, which suppresses CISS but enables ICISS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c01597 | DOI Listing |
ACS Nano
September 2025
CINBIO and Departamento de Química Orgánica. Campus Lagoas-Marcosende, Universidade de Vigo, Vigo E-36310, Spain.
Archimedean spirals are architectural motifs that are found in nature. The facial asymmetry of amphiphilic molecules or macromolecules has been a key parameter in the preparation of these well-organized two-dimensional nanostructures in the laboratory. This facial asymmetry is also present in the helical grooves of chiral helical substituted poly(phenylacetylene)s (PPAs) and poly(diphenylacetylene)s (PDPAs), making them excellent candidates for self-assembly into 2D Archimedean nanospirals or nanotoroids.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemical and Biomolecular Engineering, Department of Chemistry, Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign,Urbana, Illinois 61801, United States.
Spontaneous chiral symmetry breaking remains a fascination in chemistry, biology, materials science, and even astronomy. Chiral symmetry breaking usually requires intrinsic molecular chirality or extrinsic chiral sources but remains rare in nonchiral systems. Here, we reveal a ubiquitous, entropy-driven chiral symmetry breaking mechanism observed in 22 out of 35 conjugated polymers in the absence of any chiral source─a phenomenon overlooked for decades.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 16, 64287 Darmstadt, Germany.
Helical structures are ubiquitous in nature and exhibit fascinating properties. They are inherently chiral, and many rely on hydrogen bonds to stabilize their conformation. Homopolypeptides of the glutamate type form α-helical secondary structures and are considered rigid-rod polymers.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, Engineering Research Center of Photoresist Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Circularly polarized room-temperature phosphorescent (CP-RTP) materials have been attracting great attention due to their potential applications in anticounterfeiting. In this study, we designed and synthesized a host-guest copolymer () with strong phosphorescence emission and a long emission lifetime using a self-doping strategy. The co-assembled liquid crystal polymer networks / doped with demonstrated a stronger RTP emission and longer lifetime (τ = 148 ms).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China. Electronic address:
This work applies cellulose-based nanofilm as the platform to design a kind of stretching-responsive circularly polarized luminescence (CPL) material. Hierarchical structure photonic crystal material is prepared through the co-assembly of cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) additive. By optimizing the amounts of PVA, the composite film presents high tensile strength (61.
View Article and Find Full Text PDF