A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Investigating the Atmospheric Fate and Kinetics of OH Radical-Initiated Oxidation Reactions for Epoxybutane Isomers: Theoretical Insight. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epoxides, which belong to the category of oxygenated volatile organic compounds (OVOCs), are emitted into the atmosphere by an array of sources and can impact both human and environmental well-being significantly. This study involves comprehensive computational analyses aimed at investigating the mechanism, thermodynamic aspects, and reaction kinetics associated with hydrogen abstraction reactions of -2,3-epoxybutane, -2,3-epoxybutane, and 1,2-epoxybutane by OH radicals. The potential energy diagrams involving all of the species for each specific pathway were constructed at the CCSD(T)/aug-cc-pVTZ//M06-2X/cc-pVTZ level of theory. The rate coefficients for all possible pathways were calculated using the Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) corrected by Eckart tunneling within the 200-350 K temperature range and 1 atm pressure. The overall rate coefficients of the reaction of -2,3-epoxybutane, -2,3-epoxybutane, and 1,2-epoxybutane with OH radicals at 298.15 K were found to be 0.32 × 10, 0.33 × 10, and 0.66 × 10 cm molecule s, respectively. We also studied the atmospheric lifetime and photochemical ozone creation potential (POCP) of all three compounds. In addition, we have provided extensive degradation pathways for the product radicals formed from the initial reaction with OH radicals in the presence of O and NO. The study showed that the product radicals can result in various harmful end products, including grade 1 and grade 2 carcinogens, as listed by the World Health Organization (WHO).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c00379DOI Listing

Publication Analysis

Top Keywords

-23-epoxybutane -23-epoxybutane
8
-23-epoxybutane 12-epoxybutane
8
12-epoxybutane radicals
8
rate coefficients
8
product radicals
8
radicals
5
investigating atmospheric
4
atmospheric fate
4
fate kinetics
4
kinetics radical-initiated
4

Similar Publications