Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MoO thin film was fabricated on an indium tin oxide substrate using the physical vapor deposition technique. X-ray diffraction and scanning electron microscopy study to investigate surface morphology, grain size, and surface structure, which are critical for absorbing solar spectra in water splitting for hydrogen energy generation. Ultraviolet-visible spectroscopy was used to confirm the absorption of solar spectra and the percentage of transmittance. Fourier-transform infrared analysis provided the functional groups present in the deposited thin film. The Tauc plot was used to determine the thin-film band gap, which allowed for the analysis of charge carrier transitions from the conduction band to the valence band. Electrochemical impedance spectroscopy investigations confirmed the charge transfer processes to the counter electrode and electrolyte interfaces. The observed low curve for MoO indicated low resistance and allowed efficient charge transfer. Linear sweep voltammetry analysis was used to measure photocurrent and solar light to hydrogen emission when the thin film was exposed to solar spectra. The thin film's observed hydrogen emission rate was 3731.74 mol g h, and the STH% of MoO was found to be 0.345% at 0.8 V. These findings highlight the promising potential of MoO as a material for hydrogen energy generation using solar light.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4821DOI Listing

Publication Analysis

Top Keywords

thin film
12
solar spectra
12
water splitting
8
hydrogen energy
8
energy generation
8
charge transfer
8
solar light
8
hydrogen emission
8
hydrogen
5
solar
5

Similar Publications

Bandgap-Tailored (BiSb)Se Thin Films Enabling Fast Broadband Near-Infrared Photodetection and Imaging.

Small

September 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic

Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.

View Article and Find Full Text PDF

A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.

Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.

View Article and Find Full Text PDF

Novel Precursor for h‑BN Synthesis on Ni(111) Substrates.

J Phys Chem C Nanomater Interfaces

September 2025

Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.

In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.

View Article and Find Full Text PDF