Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Molecular dynamics (MD) simulations are conducted to assess pristine graphenylene membranes' effectiveness in seawater desalination, explicitly focusing on their salt rejection and water permeability capabilities. This study investigates the potential of the graphenylene for separation of the Na as monovalent cation, in order to evaluate its further application for separation of the other type of contaminants. To this end, the pristine graphenylene nanosheet is introduced into the simulation box which included the water molecules, sodium and chlorine ions. Subsequently, MD simulations were conducted by applying different amounts of external pressures in which the temperature changes are investigated as another effective parameter in water permeability and salt rejection properties. Furthermore, the water density map, radial distribution functions, and water density elucidate the performance of the considered membrane in the presence of water molecules, Na ions, and Cl ions. The optimum performance of the pristine graphenylene for seawater desalination is achieved at P = 400 MPa and T = 298 K that results in the water flux of 2920 L/m h bar and 98.8 % salt rejection. The pristine graphenylene nanosheet shows significant potential in effectively separating salt ions, which has elucidated its importance and subsequently, the functionalized membrane for this application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2024.108833 | DOI Listing |