A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

4-hydroxy-2-oxoglutarate metabolism in a mouse model of Primary Hyperoxaluria Type 3. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Primary Hyperoxaluria Type 3 (PH3) results from 4-hydroxy-2-oxoglutarate (HOG) aldolase (HOGA) deficiency, which causes an increase in endogenous oxalate synthesis leading to calcium oxalate kidney stone disease. The mechanisms underlying HOG metabolism and increased oxalate synthesis in PH3 are not well understood. We used a knock-out mouse model of PH3 to investigate two aspects of HOG metabolism: reduction to dihydroxyglutarate (DHG), a pathway that may limit oxalate synthesis in PH3, and metabolism to glyoxylate, which is a direct precursor to oxalate. The metabolism of HOG to DHG was highest in liver and kidney cortical tissue, enhanced in the cytosolic compartment of the liver, and preferred NADPH as a cofactor. In the absence of HOGA, HOG to glyoxylate aldolase activity was highest in liver mitoplasts, with no activity present in brain tissue lysates. These findings will assist in the identification of enzymes responsible for the metabolism of HOG to DHG and glyoxylate, which may lead to novel therapeutic approaches to limit oxalate synthesis in those afflicted with PH3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261398PMC
http://dx.doi.org/10.1016/j.bbrep.2024.101765DOI Listing

Publication Analysis

Top Keywords

oxalate synthesis
16
mouse model
8
primary hyperoxaluria
8
hyperoxaluria type
8
hog metabolism
8
synthesis ph3
8
limit oxalate
8
metabolism hog
8
hog dhg
8
highest liver
8

Similar Publications