A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of Principal Component Analysis to Heterogenous Fontan Registry Data Identifies Independent Contributing Factors to Decline. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single ventricle heart disease is a severe and life-threatening illness, and improvements in clinical outcomes of those with Fontan circulation have not yet yielded acceptable survival over the past two decades. Patients are at risk of developing a diverse variety of Fontan-associated comorbidities that ultimately requires heart transplant. Our observational cohort study goal was to determine if principal component analysis (PCA) applied to data collected from a substantial Fontan cohort can predict functional decline (N=140). Heterogeneous data broadly consisting of measures of cardiac and vascular function, exercise (VO), lymphatic biomarkers, and blood biomarkers were collected over 11 years at a single site; in that time, 16 events occurred that are considered here in a composite outcome measure. After standardization and PCA, principal components (PCs) representing >5% of total variance were thematically labeled based on their constituents and tested for association with the composite outcome. Our main findings suggest that the 6 PC (PC6), representing 7.1% percent of the total variance in the set, is greatly influenced by blood serum biomarkers and superior vena cava flow, is a superior measure of proportional hazard compared to EF, and displayed the greatest accuracy for classifying Fontan patients as determined by AUC. In bivariate hazard analysis, we found that models combining systolic function (EF or PC5) and lymphatic dysfunction (PC6) were most predictive, with the former having the greatest AIC, and the latter having the highest c-statistic. Our findings support our hypothesis that a multifactorial model must be considered to improve prognosis in the Fontan population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11261915PMC
http://dx.doi.org/10.1101/2024.07.11.24310309DOI Listing

Publication Analysis

Top Keywords

principal component
8
component analysis
8
composite outcome
8
total variance
8
fontan
5
application principal
4
analysis heterogenous
4
heterogenous fontan
4
fontan registry
4
registry data
4

Similar Publications