A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of overweight and obesity on lower limb walking characteristics from joint kinematics to muscle activations. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Obesity is a crucial factor that increases the risk of initiating and advancing knee osteoarthritis. However, it remains unclear how obesity directly impacts the biomechanical experience of the lower limb joints, potentially triggering or exacerbating joint degeneration. This study investigated the interactive effects of BMI augmentation on lower limb kinematics, kinetics, and muscle activations during walking.

Methodology: A group of 60 participants underwent a three-dimensional gait analysis. These individuals were categorized into three groups based on their body mass index (BMI): those with a BMI below 25 were classified as having a healthy weight, those with a BMI between 25 and 30 were categorized as overweight, and those with a BMI exceeding 30 were considered obese. This study analyzed the gait of 60 participants categorized by BMI. During walking trials, they recorded ground reaction forces electromyography of leg muscles like the gastrocnemii, hamstrings, and quadriceps. Lower limb joint angles and net moments were also calculated. Statistical mapping identified variations in kinematic, kinetic, and muscle activation patterns across the stance phase between BMI groups.

Results: The results displayed distinct biomechanical patterns in obese individuals. Notably, there was a significant increase in flexion observed in the hip and knee joints (P < 0.001) during the initial stance phase and an increase in hip and knee adduction angles and moments throughout the entire stance phase (P < 0.001). Additionally, muscle activations underwent significant changes (P < 0.01), with a positive correlation noted with the BMI factor. This correlation was most pronounced during the early stance phase for the quadriceps and hamstring muscles and the late stance phase for the gastrocnemius.

Conclusion: These findings represent a comprehensive picture that contributes to understanding how excess weight and obesity influence joint biomechanics, highlighting the associated risk of joint osteoarthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gaitpost.2024.06.024DOI Listing

Publication Analysis

Top Keywords

stance phase
20
lower limb
16
muscle activations
12
bmi
8
hip knee
8
joint
5
stance
5
phase
5
effects overweight
4
obesity
4

Similar Publications