98%
921
2 minutes
20
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/omi.2024.0130 | DOI Listing |
PLoS One
September 2025
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America.
Metatranscriptome sequencing has emerged as a powerful tool for uncovering viral diversity in insects and their associated microbes. To explore viruses linked to the pea aphid (Acyrthosiphon pisum), we performed metatranscriptome sequencing on field-collected samples. In addition to several known plant viruses, we assembled the genome of a new virus homologous to species in the family Mitoviridae, which are positive-sense single-stranded RNA viruses that encode only an RNA-dependent RNA polymerase and typically replicate in mitochondria.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Guayaquil, Ecuador.
Next-generation sequencing (NGS) has revolutionized food science, offering unprecedented insights into microbial communities, food safety, fermentation, and product authenticity. NGS techniques, including metagenetics, metagenomics, and metatranscriptomics, enable culture-independent pathogen detection, antimicrobial resistance surveillance, and detailed microbial profiling, significantly improving food safety monitoring and outbreak prevention. In food fermentation, NGS has enhanced our understanding of microbial interactions, flavor formation, and metabolic pathways, contributing to optimized starter cultures and improved product quality.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Institute for Fundamental Biomedical Resea rch, BSRC "Alexander Fleming," 16672 Vari, Greece.
The plant root microbiome is vital in plant health, nutrient uptake, and environmental resilience. To explore and harness this diversity, we present metagRoot, a specialized and enriched database focused on the protein families of the plant root microbiome. MetagRoot integrates metagenomic, metatranscriptomic, and reference genome-derived protein data to characterize 71 091 enriched protein families, each containing at least 100 sequences.
View Article and Find Full Text PDFMol Ecol Resour
August 2025
Mosquito Control Laboratory, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
Next-generation sequencing (NGS) has the potential to transform mosquito-borne disease surveillance but remains under-utilised. This study introduces a comprehensive multi-loci metabarcoding-based MX (molecular xenomonitoring) approach to mosquito and arbovirus surveillance, enabling parallel identification of mosquito vectors, circulating arboviruses, and vertebrate hosts from bulk mosquito collections. The feasibility of this approach was demonstrated through its application to a large set (n = 110) of bulk field collections.
View Article and Find Full Text PDFBrief Bioinform
July 2025
State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No. 66 Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China.
Metagenomic sequencing has expanded the ribonucleic acid (RNA) virosphere, but many identified viral genomes remain incomplete, especially for segmented viruses. Traditional methods relying on sequence homology struggle to identify highly divergent segments and group them confidently within a single virus species. To address this, we developed a new bioinformatic tool-SegFinder-that identifies virus genome segments based on their common co-occurrence at similar abundance within segmented viruses.
View Article and Find Full Text PDF