Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graphene is prized for its large surface area and superior electrical properties. Efforts to maximize the electrical conductivity of graphene commonly result in the recovery of sp-hybridized carbon in the form of reduced graphene oxide (rGO). However, rGO shows poor dispersibility and aggregation when mixed with other materials without hydrophilic functional groups, This could lead to electrode delamination, agglomeration, and reduced efficiency. This study focuses on the impact of solvothermal reduction on the dispersibility and capacitance of rGO compared with chemical reduction. The results show that the dispersibility of rGO-D obtained through solvothermal reduction using ,-dimethylformamide improved compared to that obtained through chemical reduction (rGO-H). Furthermore, when utilized as a material for CDI, an improvement in deionization efficiency was observed in the AC@rGO-D-based CDI system compared to AC@rGO-H and AC. However, the specific surface area, a key factor affecting CDI efficiency, was higher in rGO-H (249.572 m g) than in rGO-D (150.661 m g). While AC@rGO-H is expected to exhibit higher deionization efficiency due to its greater specific surface area, the opposite was observed. This highlights the effect of the improved dispersibility of rGO-D and underscores its potential as a valuable material for CDI applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255561PMC
http://dx.doi.org/10.1039/d4ra03387fDOI Listing

Publication Analysis

Top Keywords

surface area
12
recovery sp-hybridized
8
sp-hybridized carbon
8
solvothermal reduction
8
reduction dispersibility
8
compared chemical
8
chemical reduction
8
dispersibility rgo-d
8
material cdi
8
deionization efficiency
8

Similar Publications

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

Small glaciers situated in high mountainous areas are experiencing notable declines, characterized by unprecedented rates of ice loss in recent years. This study investigates the recent changes in surface elevation and mass loss occurring between 2010 and 2023 within the Alamkouh Glacier over three subperiods, one of the biggest glaciers in Iran and the Middle East. These assessments are derived from a combination of high-resolution LiDAR data in 2010 (with a spatial resolution of 20 cm) and multi-temporal surveys conducted using unmanned aerial vehicles (UAVs) in 2018, 2020, and 2023 (with spatial resolutions varied from 10 to 20 cm).

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF

The increasing use of blood-contacting medical devices has brought about significant advancements in patient care, yet it also presents challenges such as thrombus formation and infection risks. Surface coatings play a vital role in mitigating these side effects, enhancing the safety and effectiveness of such devices. In this study, we introduced a novel coating employing poly(aspartic acid) (PASP), which can be easily applied through various modification pathways.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF