A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Novel Reference Equations for Pulmonary Artery Size and Pulsatility Using Echocardiography and Their Diagnostic Value in Pulmonary Hypertension. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: According to the most recent pulmonary hypertension (PH) guidelines, a main pulmonary artery (MPA) diameter > 25 mm on transthoracic echocardiography supports the diagnosis of PH. However, the size of the pulmonary artery (PA) may vary according to body size, age, and cardiac phases.

Research Question: (1) What are the reference limits for PA size on transthoracic echocardiography, considering differences in body size, sex, and age? (2) What is the diagnostic value of the PA size for classifying PH? (3) How does the selection of different reference groups (healthy volunteers vs patients referred for right heart catheterization [RHC]) influence the diagnostic OR (DOR)?

Study Design And Methods: The study included a reference cohort of 248 healthy individuals as control patients, 693 patients with PH proven by RHC, and 156 patients without PH proven by RHC. In the PH cohort, 300 had group 1 PH, 207 had group 2 PH, and 186 had group 3 PH. MPA and right PA diameters and areas were measured in the upper sternal short-axis and suprasternal notch views. Reference limits (5th-95th percentile) were based on absolute values and height-indexed measures. Quantile regression analysis was used to derive median and 95th quantile reference equations for the PA measures. DORs and probability diagnostic plots for PH were then determined using healthy control and non-PH cohorts.

Results: The 95th percentile for indexed MPA diameter was 15 mm/m in diastole and 19 mm/m in systole in both sexes. Quantile regression analysis revealed a weak age effect (pseudo-R of 0.08-0.10 for MPA diameters). Among measures, the MPA size in diastole had the highest DOR (156.2; 95% CI, 68.3-357.5) for detection of group 1 PH. Similarly, the DORs were also high for groups 2 and 3 PH when compared with the control cohort but significantly lower compared with the non-PH cohort.

Interpretation: This study presents novel reference limits for MPA based on height indexing and quantile regression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638547PMC
http://dx.doi.org/10.1016/j.chest.2024.06.3805DOI Listing

Publication Analysis

Top Keywords

pulmonary artery
12
reference limits
12
quantile regression
12
novel reference
8
reference equations
8
pulmonary hypertension
8
mpa diameter
8
transthoracic echocardiography
8
body size
8
patients proven
8

Similar Publications