98%
921
2 minutes
20
Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as . Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262469 | PMC |
http://dx.doi.org/10.1080/17590914.2024.2371162 | DOI Listing |
Nanoscale
September 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.
View Article and Find Full Text PDFElife
September 2025
Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India.
The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.
View Article and Find Full Text PDFChem Sci
September 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.
View Article and Find Full Text PDFFront Pharmacol
August 2025
School of Pharmacy, Nantong University, Nantong, China.
Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.
View Article and Find Full Text PDF