Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conventional near-field acoustic holography based on compressive sensing either does not fully exploit the underlying block-sparse structures of the signal or suffers from a mismatch between the actual and predefined block structure due to the lack of prior information about block partitions, resulting in poor accuracy in sound field reconstruction. In this paper, a pattern-coupled Bayesian compressive sensing method is proposed for sparse reconstruction of sound fields. The proposed method establishes a hierarchical Gaussian-Gamma probability model with a pattern-coupled prior based on the equivalent source method, transforming the sound field reconstruction problem into recovering the sparse coefficient vector of the equivalent source strengths within the compressive sensing framework. A set of hyperparameters is introduced to control the sparsity of each element in the sparse coefficient vector of the equivalent source strengths, where the sparsity of each element is determined by both its own hyperparameters and those of its immediate neighbors. This approach enables the promotion of block sparse solutions and achieves better performance in solving for the sparse coefficient vector of the equivalent source strengths without prior information of block partitions. The effectiveness and superiority of the proposed method in reconstructing sound fields are verified by simulations and experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0027933DOI Listing

Publication Analysis

Top Keywords

compressive sensing
16
equivalent source
16
sound field
12
sparse coefficient
12
coefficient vector
12
vector equivalent
12
source strengths
12
sparse reconstruction
8
reconstruction sound
8
pattern-coupled bayesian
8

Similar Publications

Building localized states with high quality factors in compact dynamic systems could enhance the performance of wave control devices such as elastic filters and high-precision sensing devices. Here, we report on the theoretical and experimental investigation of symmetry-protected bound states in the continuum (BICs) in a compressed metaplate. The proposed theory establishes a Bessel-zero-directed multipolarization design that enables precise modulation for the frequencies and modes of BICs.

View Article and Find Full Text PDF

Botulinum toxin injection of the piriformis muscle for refractory pudendal neuralgia after decompression surgery: case report.

Pain Manag

September 2025

Serviço de Reabilitação de Adultos 3, Centro de Medicina de Reabilitação de Alcoitão, Alcabideche, Portugal.

Pudendal neuropathy is a cause of pelvic pain, specifically pudendal neuralgia. The pudendal nerve is related to sensory, motor, and autonomic functions. We present the case of a 41-year-old man who suffered from chronic pelvic pain.

View Article and Find Full Text PDF

Accurately assessing saltiness perception in solid foods is essential for the development of low-sodium foods that maintain saltiness despite possessing a lower sodium content. This study aimed to develop a practical system for evaluating human-perceived saltiness during oral processing, particularly when food was initially placed on the tongue. As a basis for system design, sensory evaluations demonstrated that higher local salt concentrations (inhomogeneous distribution) on the tongue significantly enhanced perceived saltiness intensity compared to a homogeneous distribution, despite equal total salt content.

View Article and Find Full Text PDF

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.

View Article and Find Full Text PDF