Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurosymbolic artificial intelligence (AI) is an increasingly active area of research that combines symbolic reasoning methods with deep learning to leverage their complementary benefits. As knowledge graphs (KGs) are becoming a popular way to represent heterogeneous and multirelational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy to generate models that facilitate interpretability, maintain competitive performance, and integrate expert knowledge. Therefore, we survey methods that perform neurosymbolic reasoning tasks on KGs and propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: 1) logically informed embedding approaches; 2) embedding approaches with logical constraints; and 3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the unique characteristics and limitations of these methods and then propose several prospective directions toward which this field of research could evolve.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2024.3420218DOI Listing

Publication Analysis

Top Keywords

neurosymbolic reasoning
8
knowledge graphs
8
embedding approaches
8
approaches
5
neurosymbolic
4
reasoning knowledge
4
graphs survey
4
survey neurosymbolic
4
neurosymbolic artificial
4
artificial intelligence
4

Similar Publications

Acute Lymphoblastic Leukemia (ALL) poses significant diagnostic challenges due to its ambiguous symptoms and the limitations of conventional methods like bone marrow biopsies and flow cytometry, which are invasive, costly, and time-intensive. This study introduces Neuro-Bridge-X, a novel neuro-symbolic hybrid model designed for automated, explainable ALL diagnosis using peripheral blood smear (PBS) images. Leveraging two comprehensive datasets, ALL Image (3256 images from 89 patients) and C-NMC (15,135 images from 118 patients), the model integrates deep morphological feature extraction, vision transformer-based contextual encoding, fuzzy logic-inspired reasoning, and adaptive explainability.

View Article and Find Full Text PDF

This paper introduces a novel approach to visual dialogue that is based on neuro-symbolic procedural semantics. The approach builds further on earlier work on procedural semantics for visual question answering and expands it with neuro-symbolic mechanisms that handle the challenges that are inherent to dialogue, in particular the incremental nature of the information that is conveyed. Concretely, we introduce (i) the use of a conversation memory as a data structure that explicitly and incrementally represents the information that is expressed during the subsequent turns of a dialogue, and (ii) the design of a neuro-symbolic procedural semantic representation that is grounded in both visual input and the conversation memory.

View Article and Find Full Text PDF

Understanding and reasoning about objects' physical properties in the natural world is a fundamental challenge in artificial intelligence. While some properties like colors and shapes can be directly observed, others, such as mass and electric charge, are hidden from the objects' visual appearance. This paper addresses the unique challenge of inferring these hidden physical properties from objects' motion and interactions and predicting corresponding dynamics based on the inferred physical properties.

View Article and Find Full Text PDF

Diabetes Mellitus (DM) is a global epidemic and among the top ten leading causes of mortality (WHO, 2019), projected to rank seventh by 2030. The US National Diabetes Statistics Report (2021) states that 38.4 million Americans have diabetes.

View Article and Find Full Text PDF