98%
921
2 minutes
20
Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex. Approximately 95% of holes in the PNNs contain synapses and astrocytic processes expressing Kir4.1, glutamate and GABA transporters. Hence, holes in the PNNs contain tripartite synapses. In the adult mouse brain, PNN degradation causes an expanded astrocytic coverage of the neuronal somata without altering the axon terminals. The loss of PNNs impairs astrocytic transmitter and potassium uptake, resulting in the spillage of glutamate into the extrasynaptic space. Our data show that PNNs and astrocytes cooperate to contain synaptically released signals in physiological conditions. Their combined action is altered in mouse models of Alzheimer's disease and epilepsy where PNNs are disrupted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303255 | PMC |
http://dx.doi.org/10.1038/s41593-024-01714-3 | DOI Listing |
Learn Mem
December 2024
Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss.
View Article and Find Full Text PDFCells
September 2024
Department of Pharmacology, University of California San Diego, CA 92093, USA.
Perineuronal nets (PNNs), a specialized form of extra cellular matrix (ECM), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesize that PNNs serve as gatekeepers that guard and protect synaptic territory and thus may stabilize an engram circuit. We present high-resolution and 3D EM images of PNN-engulfed neurons in mice brains, showing that synapses occupy the PNN holes and that invasion of other cellular components is rare.
View Article and Find Full Text PDFNat Neurosci
August 2024
Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
Perineuronal nets (PNNs) are densely packed extracellular matrices that cover the cell body of fast-spiking inhibitory neurons. PNNs stabilize synapses inhibiting synaptic plasticity. Here we show that synaptic terminals of fast-spiking interneurons localize to holes in the PNNs in the adult mouse somatosensory cortex.
View Article and Find Full Text PDFJ Neurochem
September 2024
Department of Neuroscience, University of Virginia School of Medicine, Virginia, USA.
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures found throughout the central nervous system that regulate plasticity. They consist of a heterogeneous mix of ECM components that form lattice-like structures enwrapping the cell body and proximal dendrites of particular neurons. During development, accumulating research has shown that the closure of various critical periods of plasticity is strongly linked to experience-driven PNN formation and maturation.
View Article and Find Full Text PDFUnlabelled: Perineuronal nets (PNN), a specialized form of ECM (?), surround numerous neurons in the CNS and allow synaptic connectivity through holes in its structure. We hypothesis that PNNs serve as gatekeepers that guard and protect synaptic territory, and thus may stabilize an engram circuit. We present high-resolution, and 3D EM images of PNN- engulfed neurons showing that synapses occupy the PNN holes, and that invasion of other cellular components are rare.
View Article and Find Full Text PDF