Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
As a lung cancer biomarker, exosomes were utilized for in vitro diagnosis to overcome the lack of sensitivity of conventional imaging and the potential harm caused by tissue biopsy. However, given the inherent heterogeneity of exosomes, the challenge of accurately and reliably recognizing subtle differences in the composition of exosomes from clinical samples remains significant. Herein, we report an artificial intelligence-assisted surface-enhanced Raman spectroscopy (SERS) strategy for label-free profiling of plasma exosomes for accurate diagnosis of early-stage lung cancer. Specifically, we build a deep learning model using exosome spectral data from lung cancer cell lines and normal cell lines. Then, we extracted the features of cellular exosomes by training a convolutional neural network (CNN) model on the spectral data of cellular exosomes and used them as inputs to a support vector machine (SVM) model. Eventually, the spectral features of plasma exosomes were combined to effectively distinguish adenocarcinoma in situ (AIS) from healthy controls (HC). Notably, the approach demonstrated significant performance in distinguishing AIS from HC samples, with an area under the curve (AUC) of 0.84, sensitivity of 83.3%, and specificity of 83.3%. Together, the results demonstrate the utility of exosomes as a biomarker for the early diagnosis of lung cancer and provide a new approach to prescreening techniques for lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-024-05445-z | DOI Listing |