Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Friction, typically associated with reduced efficiency and reliability of machines and devices, occurs when two objects are displaced against each other. This is a strongly material-dependent phenomenon, and the emergence of many 2D materials has opened up new opportunities to design systems with desired tribological properties. Here, we combine high throughput simulations and machine learning models to develop a statistical approach of adhesion, van der Waals, and corrugation energies of a large dataset of monolayered materials. The machine learning models are used to predict these closely related to friction energetic properties and link them to easily accessible atomistic and monolayer features. This approach elevates the materials' perspective of frictional properties. It demonstrates that data-driven models are extremely useful in discovering important structure-property functionalities for frictional property interpretations as a fruitful route toward desired tribological materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c05532 | DOI Listing |