Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252408PMC
http://dx.doi.org/10.1038/s41467-024-50194-3DOI Listing

Publication Analysis

Top Keywords

single-cell sequencing
8
bulk rna-seq
8
"omitted" cells
8
single cell
8
omicverse framework
4
framework bridging
4
bridging deepening
4
deepening insights
4
bulk
4
insights bulk
4

Similar Publications

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.

View Article and Find Full Text PDF