Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cyclopropanes are recurrent structural motifs in natural products and bioactive molecules. Recently, biocatalytic cyclopropanations have emerged as a powerful approach to access enantioenriched cyclopropanes, complementing chemocatalytic approaches developed over the last several decades. Here, we report the development of a first biocatalytic strategy for cyclopropanation using ethyl α-diazopyruvate as a novel enzyme-compatible carbene precursor. Using myoglobin variant Mb(H64V,V68G) as the biocatalyst, this method afforded the efficient synthesis of α-cyclopropylpyruvates in high diastereomeric ratios and enantiomeric excess (up to 99% ). The ketoester moiety in the cyclopropane products can be used to synthesize diverse optically pure cyclopropane derivatives. Furthermore, the enzymatically obtained α-cyclopropylpyruvate products could be converted into enantiopure cyclobutenoates via a metal-free photochemical ring expansion without loss of optical activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241863 | PMC |
http://dx.doi.org/10.1039/d3qo01987j | DOI Listing |