Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conventional technique for successful bone grafts, involving the use of a patienťs own tissue (autografts), is challenged by limited availability and donor site morbidity. While allografts and xenografts offer alternatives, they come with the risk of rejection. This underscores the pressing need for tailor-made artificial bone graft materials. In this context, injectable hydrogels are emerging as a promising solution for bone regeneration, especially in complex maxillofacial reconstruction cases. These hydrogels can seamlessly adapt to irregular shapes and conservatively fill defects. Our study introduces a shear-thinning biomaterial by blending silicate nanoplatelets (SNs) enriched with human blood-derived plasma rich in growth factors (PRGF) for personalized applications. Notably, our investigations unveil that injectable hydrogel formulations comprising 7.5% PRGF yield sustained protein and growth factor release, affording precise control over critical growth factors essential for tissue regeneration. Moreover, our hydrogel exhibits exceptional biocompatibility in vitro and in vivo and demonstrates hemostatic properties. The hydrogel also presents a robust angiogenic potential and an inherent capacity to promote bone differentiation, proven through Alizarin Red staining, gene expression, and immunostaining assessments of bone-related biomarkers. Given these impressive attributes, our hydrogel stands out as a leading candidate for maxillofacial bone regeneration application. Beyond this, our findings hold immense potential in revolutionizing the field of regenerative medicine, offering an influential platform for crafting precise and effective therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242922PMC
http://dx.doi.org/10.1016/j.apmt.2024.102250DOI Listing

Publication Analysis

Top Keywords

shear-thinning biomaterial
8
bone regeneration
8
growth factors
8
bone
5
nanobioactive blood-derived
4
blood-derived shear-thinning
4
biomaterial tissue
4
tissue engineering
4
engineering applications
4
applications conventional
4

Similar Publications

Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.

View Article and Find Full Text PDF

Hydrogel biomaterials offer great promise for three-dimensional cell culture and therapeutic delivery. Despite many successes, challenges persist in that gels formed from natural proteins are only marginally tunable whereas those derived from synthetic polymers lack intrinsic bioinstructivity. Toward the creation of biomaterials with both excellent biocompatibility and customizability, recombinant protein-based hydrogels have emerged as molecularly defined and user-programmable platforms that mimic the proteinaceous nature of the extracellular matrix.

View Article and Find Full Text PDF

Gallic acid, a natural phenolic compound, was used as a crosslinking agent to achieve protein-polyphenol conjugation under alkaline conditions, presenting an innovative approach to stabilize gelatin. The formulated inks were evaluated for their rheological properties and 3D printing performance. Once the scaffolds were printed, physicochemical properties were assessed by color changes and FTIR.

View Article and Find Full Text PDF

A considerable number of xenogeneic tissues are still underutilised due to concerns about immunogenicity, biocompatibility, and structural integrity. Decellularized extracellular matrix (dECM) hydrogels are gaining popularity due to their ability to mimic natural biochemical cues and structural integrity required for tissue regeneration. In this study, we used pig tendon tissues, which are commonly discarded, to create photo-crosslinked dECM hydrogels.

View Article and Find Full Text PDF

Molecular Engineering of Recombinant Protein Hydrogels: Programmable Design and Biomedical Applications.

Gels

July 2025

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.

Recombinant protein hydrogels have emerged as transformative biomaterials that overcome the bioinertness and unpredictable degradation of traditional synthetic systems by leveraging genetically engineered backbones, such as elastin-like polypeptides, SF, and resilin-like polypeptides, to replicate extracellular matrix (ECM) dynamics and enable programmable functionality. Constructed through a hierarchical crosslinking strategy, these hydrogels integrate reversible physical interactions with covalent crosslinking approaches, collectively endowing the system with mechanical strength, environmental responsiveness, and controlled degradation behavior. Critically, molecular engineering strategies serve as the cornerstone for functional precision: domain-directed self-assembly exploits coiled-coil or β-sheet motifs to orchestrate hierarchical organization, while modular fusion of bioactive motifs through genetic encoding or site-specific conjugation enables dynamic control over cellular interactions and therapeutic release.

View Article and Find Full Text PDF