A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of joint moments from kinematics using machine learning in children with congenital talipes equino varus and typically developing peers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Understanding joint loading and the crucial role of joint moments is essential for developing treatment strategies in gait analysis, which often requires the precise estimation of joint moments through an inverse dynamic approach. This process necessitates the use of a force plate synchronized with a motion capture system. However, effectively capturing ground reaction force in typically developing (TD) children and those with congenital talipes equino varus (CTEV) presents challenges, while the availability and high cost of additional force plates pose additional challenges. Therefore the study aimed to develop, train, and identify the most effective machine learning (ML) model to predict joint moments from kinematics for TD children and those with CTEV.

Method: In a study at the Gait Lab, 13 children with bilateral CTEV and 17 TD children underwent gait analysis to measure kinematics and kinetics, using a 12-camera Qualisys Motion Capture System and an AMTI force plate. ML models were then trained to predict joint moments from kinematic data as input.

Results: The random forest regressor and deep neural networks (DNN) proved most effective in predicting joint moments from kinematics for TD children, yielding better results. The Random Forest regressor achieved an average r of 0.75 and nRMSE of 23.03 % for TD children, and r of 0.74 and 23.82 % for CTEV. DNN achieved an average r of 0.75 and nRMSE of 22.83 % for TD children, and r of 0.76 and nRMSE of 23.9 % for CTEV.

Conclusions: The findings suggest that using machine learning to predict joint moments from kinematics shows moderate potential as an alternative to traditional gait analysis methods for both TD children and those with CTEV. Despite its potential, the current prediction accuracy limitations hinder the immediate clinical application of these techniques for decision-making in a pediatric population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245943PMC
http://dx.doi.org/10.1016/j.jor.2024.06.016DOI Listing

Publication Analysis

Top Keywords

joint moments
28
moments kinematics
16
machine learning
12
gait analysis
12
predict joint
12
children
9
children congenital
8
congenital talipes
8
talipes equino
8
equino varus
8

Similar Publications