Improved Video-Based Point Cloud Compression via Segmentation.

Sensors (Basel)

Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A point cloud is a representation of objects or scenes utilising unordered points comprising 3D positions and attributes. The ability of point clouds to mimic natural forms has gained significant attention from diverse applied fields, such as virtual reality and augmented reality. However, the point cloud, especially those representing dynamic scenes or objects in motion, must be compressed efficiently due to its huge data volume. The latest video-based point cloud compression (V-PCC) standard for dynamic point clouds divides the 3D point cloud into many patches using computationally expensive normal estimation, segmentation, and refinement. The patches are projected onto a 2D plane to apply existing video coding techniques. This process often results in losing proximity information and some original points. This loss induces artefacts that adversely affect user perception. The proposed method segments dynamic point clouds based on shape similarity and occlusion before patch generation. This segmentation strategy helps maintain the points' proximity and retain more original points by exploiting the density and occlusion of the points. The experimental results establish that the proposed method significantly outperforms the V-PCC standard and other relevant methods regarding rate-distortion performance and subjective quality testing for both geometric and texture data of several benchmark video sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243880PMC
http://dx.doi.org/10.3390/s24134285DOI Listing

Publication Analysis

Top Keywords

point cloud
20
point clouds
12
point
8
video-based point
8
cloud compression
8
v-pcc standard
8
dynamic point
8
original points
8
proposed method
8
cloud
5

Similar Publications

Effects of location- and object-based attention on sensory processing have been mostly studied in isolation leaving the relations between them less well understood. In an EEG experiment, temporal dynamics of location- and object-based attention were investigated with a probabilistic spatial cueing task to test temporal differences between sensory enhancement of two locations in one object. Stimuli consisted of two vertical rectangles/bars filled with a random noise pattern.

View Article and Find Full Text PDF

3D Structural Phenotype of the Optic Nerve Head in Glaucoma and Myopia - A Key to Improving Glaucoma Diagnosis in Myopic Populations.

Am J Ophthalmol

September 2025

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta

Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.

Design: Retrospective cross-sectional study.

Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.

View Article and Find Full Text PDF

Inter-modality feature prediction through multimodal fusion for 3D shape defect detection.

Neural Netw

September 2025

School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.

3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.

View Article and Find Full Text PDF

This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').

View Article and Find Full Text PDF

Background And Objectives: Stroke is a leading cause of long-term disability. Etanercept, a competitive tumor necrosis factor-α inhibitor, has been proposed as a potential treatment for post-stroke impairments when given through a perispinal subcutaneous injection. We aimed to evaluate the safety and efficacy of perispinal etanercept in patients with chronic stroke.

View Article and Find Full Text PDF