98%
921
2 minutes
20
Metal sub-microparticles (SMPs) and nanoparticles (NPs) presence in food is attributable to increasing pollution from the environment in raw materials and finished products. In the present study, a multifaceted analytical strategy based on Environmental Scanning Electron Microscopy and High-Angle Annular Dark-Field-Scanning Transmission Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (ESEM-EDX, HAADF-STEM-EDX) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was proposed for the detection and characterization of metal and metal-containing SMPs and NPs in durum wheat samples, covering a size measurement range from 1 nm to multiple µm. ESEM-EDX and ICP-MS techniques were applied for the assessment of SMP and NP contamination on the surface of wheat grains collected from seven geographical areas characterized by different natural and anthropic conditions, namely Italy, the USA, Australia, Slovakia, Mexico, Austria, and Russia. ICP-MS showed significant differences among the mean concentration levels of metals, with the USA and Italy having the highest level. ESEM-EDX analysis confirmed ICP-MS concentration measurements and measured the highest presence of particles < 0.8 µm in size in samples from Italy, followed by the USA. Less marked differences were observed when particles < 0.15 µm were considered. HAADF-STEM-EDX was applied to a selected number of samples for a preliminary assessment of internal contamination by metal SMPs and NPs, and to expand the measurable particle size range. The multifaceted approach provided similar results for Fe-containing SMPs and NPs. ICP-MS and ESEM-EDX also highlighted the presence of a significant abundance of Ti- and Al-containing particles, while for STEM-EDX, sample preparation artifacts complicated the interpretation. Finally, HAADF-STEM-EDX results provided relevant information about particles in the low nm range, since, by applying this technique, no particles smaller than 50 nm were observed in accordance with ESEM-EDX.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11243335 | PMC |
http://dx.doi.org/10.3390/molecules29133148 | DOI Listing |
Nanomaterials (Basel)
October 2024
Center for Process Analysis and Technology (PA&T), School of Life Sciences, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany.
The use of surface-enhanced Raman spectroscopy (SERS) in liquid solutions has always been challenging due to signal fluctuations, inconsistent data, and difficulties in obtaining reliable results, especially at very low analyte concentrations. In our study, we introduce a new method using a three-dimensional (3D) SERS substrate made of silica microparticles (SMPs) with attached plasmonic nanoparticles (NPs). These SMPs were placed in low-concentration analyte solutions for SERS analysis.
View Article and Find Full Text PDFMolecules
July 2024
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
Carbohydr Polym
October 2023
Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy.
Ionotropic gelation (IG) is a highly attractive method for the synthesis of natural water-soluble polymeric nanoparticles (NPs) and sub-micron particles (sMP) due to its relatively simple procedure and the absence of organic solvents. The method involves the electrostatic interaction between two ionic species of opposite charge. Although it is well studied at the laboratory scale, the difficulty to achieve size control in conventional bench-top process is actually a critical aspect of the technology.
View Article and Find Full Text PDFMaterials (Basel)
November 2022
Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland.
Studies on nanoparticles' effects on plants are relevant for horticulture. This study aimed to test the influence of zinc oxide submicron particles (ZnO SMPs), zinc oxide nanoparticles (ZnO NPs), and zinc oxide nanoparticles combined with silver nanoparticles (ZnO+1%Ag NPs) applied at 100 and 500 mg·L on the regeneration and biochemical activity of adventitious shoots in (Ramat.) Hemsl.
View Article and Find Full Text PDFFront Toxicol
May 2022
Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa.
During the synthesis of engineered nanomaterials (ENMs), various occupational exposures occur, leading to health consequences. To date, there is paucity of studies focused on modeling the deposition of nanoparticles emitted from ENMs synthesis processes. This study aimed to characterise and assess exposure to gold (AuNPs) and silver nanoparticles (AgNPs) during a synthesis process in a research laboratory in South Africa.
View Article and Find Full Text PDF