A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Highly Efficient Phosphazene-Derivative-Based Flame Retardant with Comprehensive and Enhanced Fire Safety and Mechanical Performance for Polycarbonate. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycarbonate (PC) as a widely used engineering plastic that shows disadvantages of flammability and large smoke production during combustion. Although many flame-retardant PCs have been developed, most of them show enhanced flame retardancy but poor smoke suppression or worsened mechanical performance. In this work, a novel nitrogen-phosphorus-sulfur synergistic flame retardant (Pc-FR) was synthesized and incorporated into PC with polytetrafluoroethylene (PTFE). The extremely low content of PC-FR (0.1-0.5 wt%) contributes significantly to the flame retardancy, smoke suppression and mechanical performance of PC. PC/0.3 wt% Pc-FR/0.3 wt% PTFE (PC-P0.3) shows the UL-94 V-0 and LOI of 33.5%. The PHRR, THR, PSPR, PCO and TCO of PC-P0.3 decreased by 39.44%, 14.38%, 17.45%, 54.75% and 30.61%, respectively. The impact strength and storage modulus of PC-P0.1 increased by 7.7 kJ/m and 26 MPa, respectively. The pyrolysis mechanism of PC-P0.3 is also revealed. The pyrolysis mechanism of PC-P0.3 is stochastic nucleation and subsequent growth and satisfies the Aevrami-Erofeev equation. The reaction order of PC-P0.3 is 1/2. The activation energy of PC-P0.3 is larger than PC-0, which proves that the Pc-FR can suppress the pyrolysis of the PC. This work offers a direction on how to design high-performance PC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242893PMC
http://dx.doi.org/10.3390/ma17133206DOI Listing

Publication Analysis

Top Keywords

mechanical performance
12
flame retardant
8
flame retardancy
8
smoke suppression
8
pyrolysis mechanism
8
mechanism pc-p03
8
pc-p03
6
highly efficient
4
efficient phosphazene-derivative-based
4
flame
4

Similar Publications