Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study focuses on the geometrical, electronic, and optical properties of the γ-graphyne-like novel γ-SiC nanoflake of the γ-silicon carbide (SiC) monolayer using density functional theory calculations. γ-SiC was revealed to be a stable semiconducting nanoflake confirmed by a negative cohesive energy, real vibrational frequencies, and a 1.749 eV energy gap. The adsorption of COCl, HCN, PH, AsH, CNCl, and CN toxic gases on the γ-SiC nanoflake is also studied, which revealed an attractive gas-nanoflake interaction with the adsorption energy ranging from -0.21 to -0.38 eV. The adsorption results in a significant charge transfer between gas-adsorbent complexes. A significant variation in the energy gap and electrical conductivity was observed due to gas adsorption. γ-SiC showed maximum sensitivity at room temperature for CNCl gas. The entire process of adsorption is exothermic and thermodynamically stable. γ-SiC showed a high absorption coefficient over 10 orders with a significant variation in the absorption peak intensity and blue peak shifting. According to the quantum theory and reduced density gradient analysis, all of the gases are physisorbed on the γ-SiC nanoflake due to van der Waals interactions. The obtained results signify the usability of γ-SiC as a potential toxic gas sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02133 | DOI Listing |