Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Baeyer-Villiger monooxygenases (BVMOs) are NAD(P)H-dependent flavoproteins that convert ketones to esters and lactones. While these enzymes offer an appealing alternative to traditional Baeyer-Villiger oxidations, these proteins tend to be either too unstable or exhibit too narrow of a substrate scope for implementation as industrial biocatalysts. Here, sequence similarity networks were used to search for novel BVMOs that are both stable and promiscuous. Our genome mining led to the identification of an enzyme from Chloroflexota bacterium (strain G233) dubbed ssnBVMO that exhibits i) the highest melting temperature of any naturally sourced BVMO (62.5 °C), ii) a remarkable kinetic stability across a wide range of conditions, similar to those of PAMO and PockeMO, iii) optimal catalysis at 50 °C, and iv) a broad substrate scope that includes linear aliphatic, aromatic, and sterically bulky ketones. Subsequent quantitative assays using propiophenone demonstrated >95 % conversion. Several fusions were also constructed that linked ssnBVMO to a thermostable phosphite dehydrogenase. These fusions can recycle NADPH and catalyze oxidations with sub-stoichiometric quantities of this expensive cofactor. Characterization of these fusions permitted identification of PTDH-L1-ssnBVMO as the most promising protein that could have utility as a seed sequence for enzyme engineering campaigns aiming to develop biocatalysts for Baeyer-Villiger oxidations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.202400443 | DOI Listing |