A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring machine learning applications in Meningioma Research (2004-2023). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: This study aims to examine the trends in machine learning application to meningiomas between 2004 and 2023.

Methods: Publication data were extracted from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WOSCC). Using CiteSpace 6.2.R6, a comprehensive analysis of publications, authors, cited authors, countries, institutions, cited journals, references, and keywords was conducted on December 1, 2023.

Results: The analysis included a total of 342 articles. Prior to 2007, no publications existed in this field, and the number remained modest until 2017. A significant increase occurred in publications from 2018 onwards. The majority of the top 10 authors hailed from Germany and China, with the USA also exerting substantial international influence, particularly in academic institutions. Journals from the IEEE series contributed significantly to the publications. "Deep learning," "brain tumor," and "classification" emerged as the primary keywords of focus among researchers. The developmental pattern in this field primarily involved a combination of interdisciplinary integration and the refinement of major disciplinary branches.

Conclusion: Machine learning has demonstrated significant value in predicting early meningiomas and tailoring treatment plans. Key research focuses involve optimizing detection indicators and selecting superior machine learning algorithms. Future efforts should aim to develop high-performance algorithms to drive further innovation in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225743PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e32596DOI Listing

Publication Analysis

Top Keywords

machine learning
16
exploring machine
4
learning
4
learning applications
4
applications meningioma
4
meningioma 2004-2023
4
2004-2023 objective
4
objective study
4
study aims
4
aims examine
4

Similar Publications