A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Velocimetry of GHz elastic surface waves in quartz and fused silica based on full-field imaging of pump-probe reflectometry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study reports an imaging method for gigahertz surface acoustic waves in transparent layers using infrared subpicosecond laser pulses in the ablation regime and an optical pump-probe technique. The reflectivity modulations due to the photoelastic effect of generated multimodal surface acoustic waves were imaged by an sCMOS camera illuminated by the time-delayed, frequency-doubled probe pulses. Moving the delay time between , image stacks of wave field propagation were created. Two representative samples were investigated: wafers of isotropic fused silica and anisotropic x-cut quartz. Rayleigh (SAW) and longitudinal dominant high-velocity pseudo-surface acoustic wave (HVPSAW) modes could be observed and tracked along a circular grid around the excitation center, allowing the extraction of angular profiles of the propagation velocity. In quartz, the folding of a PSAW was observed. A finite element simulation was developed to predict the measurement results. The simulation and measurement were in good agreement with a relative error of 2 % to 5 %. These results show the potential for fast and full-field imaging of laser-generated ultrasonic surface wave modes, which can be utilized for the characterization of thin transparent samples such as semiconductor wafers or optical crystals in the gigahertz frequency range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225356PMC
http://dx.doi.org/10.1016/j.pacs.2024.100627DOI Listing

Publication Analysis

Top Keywords

fused silica
8
full-field imaging
8
surface acoustic
8
acoustic waves
8
velocimetry ghz
4
ghz elastic
4
surface
4
elastic surface
4
surface waves
4
waves quartz
4

Similar Publications