A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling relationship between complex lifetimes and microscopic diffusion in deep eutectic solvents. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous mixtures of deep eutectic solvents (DESs) have emerged as a subject of interest in recent years for their tailored physicochemical properties. However, a comprehensive understanding of water's multifaceted influence on the microscopic dynamics, including its impact on improved transport properties of the DES, remains elusive. Additionally, the diffusion mechanisms within DESs manifest heterogeneous behavior, intricately tied to the formation and dissociation kinetics of complexes and hydrogen bonds. Therefore, it is imperative to explore the intricate interplay between bond kinetics, diffusion mechanism, and dynamical heterogeneity. This work employs water as an agent to explore their relationships by studying various relaxation phenomena in a DES based on acetamide and lithium perchlorate over a wide range of water concentrations. Notably, acetamide exhibits Fickian yet non-Gaussian diffusion across all water concentrations with Fickian (τf) and Gaussian (τg) timescales following a power-law relationship, τg∝τfγ, γ ∼ 1.4. The strength of coupling between bond kinetics and different diffusion timescales is estimated through various power-law relationships. Notably, acetamide-water hydrogen bond lifetime is linked to diffusive timescales through a single power-law over the entire water concentration studied. However, the relationship between diffusive timescales and the lifetime of acetamide-lithium complexes shows a sharp transition in behavior at 20 wt. % water, reflecting a change from vehicular diffusion below this concentration to structural diffusion above it. Our findings emphasize the critical importance of understanding bond dynamics within DESs, as they closely correlate with and regulate the molecular diffusion processes within these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0213402DOI Listing

Publication Analysis

Top Keywords

diffusion
8
deep eutectic
8
eutectic solvents
8
bond kinetics
8
kinetics diffusion
8
water concentrations
8
diffusive timescales
8
water
5
unraveling relationship
4
relationship complex
4

Similar Publications