98%
921
2 minutes
20
Manganese (Mn) is a versatile transition element with diverse oxidation states and significant biological importance. Mn-based nanozymes have emerged as promising catalysts in various applications. However, the direct use of manganese oxides as oxidase mimics remains limited and requires further improvement. In this study, we focus on hydroxylated manganese (MnOOH), specifically the layered form β-MnOOH which exhibits unique electronic and structural characteristics. The two-dimensional β-MnOOH nanosheets were synthesized through a hydrothermal approach and showed remarkable oxidase-like activity. These nanosheets effectively converted the oxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), into its oxidized form by initiating the conversion of dissolved oxygen into ·O, O and ·OH. However, in the presence of L-cysteine (L-Cys), the catalytic activity of β-MnOOH was significantly inhibited, enabling highly sensitive detection of L-Cys. This sensing strategy was successfully applied for smartphone-based L-Cys assay, offering potential utility in the diagnosis of Cys-related diseases. The exploration of layered β-MnOOH nanosheets as highly active oxidase mimics opens up new possibilities for catalytic and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2024.114075 | DOI Listing |
Anal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.
The development of efficient and economical oxygen evolution reaction (OER) catalysts is highly desired, and cobalt-based nanomaterials are promising candidates. In this work, we tackle one key question for cobalt-assisted photocatalytic OER: What is the true active species of Co(OH) for the photocatalytic OER? Hence, we investigated photocatalytic OER on nanostructured Co(OH) and CoO for comparison. We found that there was a significant transformation of Co(OH) during the photocatalytic process with a [Ru(bpy)]/SO buffer.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada.
Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.
View Article and Find Full Text PDF