A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Diagnostic performance of the Japanese Narrow-band imaging expert team classification system using dual focus magnification in real-time Vietnamese setting. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The JNET classification, combined with magnified narrowband imaging (NBI), is essential for predicting the histology of colorectal polyps and guiding personalized treatment strategies. Despite its recognized utility, the diagnostic efficacy of JNET classification using NBI with dual focus (DF) magnification requires exploration in the Vietnamese context. This study aimed to investigate the diagnostic performance of the JNET classification with the NBI-DF mode in predicting the histology of colorectal polyps in Vietnam. A cross-sectional study was conducted at the University Medical Center in Ho Chi Minh City, Vietnam. During real-time endoscopy, endoscopists evaluated the lesion characteristics and recorded optical diagnoses using the dual focus mode magnification according to the JNET classification. En bloc lesion resection (endoscopic or surgical) provided the final pathology, serving as the reference standard for optical diagnoses. A total of 739 patients with 1353 lesions were recruited between October 2021 and March 2023. The overall concordance with the JNET classification was 86.9%. Specificities and positive predictive values for JNET types were: type 1 (95.7%, 88.3%); type 2A (81.4%, 90%); type 2B (96.6%, 54.7%); and type 3 (99.9%, 93.3%). The sensitivity and negative predictive value for differentiating neoplastic from non-neoplastic lesions were 97.8% and 88.3%, respectively. However, the sensitivity for distinguishing malignant from benign neoplasia was lower at 64.1%, despite a specificity of 95.9%. Notably, the specificity and positive predictive value for identifying deep submucosal cancer were high at 99.8% and 93.3%. In Vietnam, applying the JNET classification with NBI-DF demonstrates significant value in predicting the histology of colorectal polyps. This classification guides treatment decisions and prevents unnecessary surgeries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11224830PMC
http://dx.doi.org/10.1097/MD.0000000000038752DOI Listing

Publication Analysis

Top Keywords

jnet classification
24
dual focus
12
predicting histology
12
histology colorectal
12
colorectal polyps
12
diagnostic performance
8
classification
8
focus magnification
8
classification nbi-df
8
optical diagnoses
8

Similar Publications