A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Kidney, ureter, and urinary bladder segmentation based on non-contrast enhanced computed tomography images using modified U-Net. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study was performed to segment the urinary system as the basis for diagnosing urinary system diseases on non-contrast computed tomography (CT). This study was conducted with images obtained between January 2016 and December 2020. During the study period, non-contrast abdominopelvic CT scans of patients and diagnosed and treated with urinary stones at the emergency departments of two institutions were collected. Region of interest extraction was first performed, and urinary system segmentation was performed using a modified U-Net. Thereafter, fivefold cross-validation was performed to evaluate the robustness of the model performance. In fivefold cross-validation results of the segmentation of the urinary system, the average dice coefficient was 0.8673, and the dice coefficients for each class (kidney, ureter, and urinary bladder) were 0.9651, 0.7172, and 0.9196, respectively. In the test dataset, the average dice coefficient of best performing model in fivefold cross validation for whole urinary system was 0.8623, and the dice coefficients for each class (kidney, ureter, and urinary bladder) were 0.9613, 0.7225, and 0.9032, respectively. The segmentation of the urinary system using the modified U-Net proposed in this study could be the basis for the detection of kidney, ureter, and urinary bladder lesions, such as stones and tumours, through machine learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222420PMC
http://dx.doi.org/10.1038/s41598-024-66045-6DOI Listing

Publication Analysis

Top Keywords

urinary system
24
kidney ureter
16
ureter urinary
16
urinary bladder
16
modified u-net
12
urinary
11
computed tomography
8
fivefold cross-validation
8
segmentation urinary
8
average dice
8

Similar Publications