A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Research on reliability mapping of 5G low orbit constellation network slice based on deep reinforcement learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Reliability mapping of 5G low orbit constellation network slice is an important means to ensure link network communication. The problem of state space explosion is a typical problem. The deep reinforcement learning method is introduced. Under the 5G low orbit constellation integrated network architecture based on software definition network (SDN) and network function virtualization (NFV), the resource requirements and resource constraints of the virtual network function (VNF) are comprehensively considered to build the 5G low orbit constellation network slice reliability mapping model, and the reliability mapping model parameters are trained and learned by using deep reinforcement learning, solve the problem of state space explosion in the reliability mapping process of 5G low orbit constellation network slices. In addition, node backup and link backup strategies based on importance are adopted to solve the problem that VNF/link reliability is difficult to meet in the reliability mapping process of 5G low orbit constellation network slice. The experimental results show that this method improves the network throughput, packet loss rate and intra slice traffic of 5G low orbit constellation, and can completely repair network faults within 0.3 s; For different number of 5G low orbit constellation network slicing requests, the reliability of this method remains above 98%; For SFC with different lengths, the average network delay of this method is less than 0.15 s.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222458PMC
http://dx.doi.org/10.1038/s41598-024-66188-6DOI Listing

Publication Analysis

Top Keywords

low orbit
32
orbit constellation
32
reliability mapping
24
constellation network
24
network slice
16
network
14
deep reinforcement
12
reinforcement learning
12
reliability
8
low
8

Similar Publications