Lipid Trolling to Optimize A Adenosine Receptor-Positive Allosteric Modulators (PAMs).

J Med Chem

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A adenosine receptor (AAR) positive allosteric modulators (PAMs) (2,4-disubstituted-1-imidazo[4,5-]quinolin-4-amines) allosterically increase the of AAR agonists, but not potency, due to concurrent orthosteric antagonism. Following mutagenesis/homology modeling of the proposed lipid-exposed allosteric binding site on the cytosolic side, we functionalized the scaffold, including heteroatom substitutions and exocyclic phenylamine extensions, to increase allosteric binding. Strategically appended linear alkyl-alkynyl chains with terminal amino/guanidino groups improved allosteric effects at both human and mouse AARs. The chain length, functionality, and attachment position were varied to modulate AAR PAM activity. For example, (MRS8247, -alkyne-linked 8 methylenes) and homologues increased agonist Cl-IB-MECA's and potency ([S]GTPγS binding). The putative mechanism involves a flexible, terminally cationic chain penetrating the lipid environment for stable electrostatic anchoring to cytosolic phospholipid head groups, suggesting "lipid trolling", supported by molecular dynamic simulation of the active-state model. Thus, we have improved AAR PAM activity through rational design based on an extrahelical, lipidic binding site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636968PMC
http://dx.doi.org/10.1021/acs.jmedchem.4c00944DOI Listing

Publication Analysis

Top Keywords

allosteric modulators
8
modulators pams
8
allosteric binding
8
binding site
8
aar pam
8
pam activity
8
allosteric
5
lipid trolling
4
trolling optimize
4
optimize adenosine
4

Similar Publications

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

The effects of apigenin, a plant flavonoid, were investigated using the two-electrode voltage-clamp technique on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in oocytes. Currents induced by ACh (100 μM) were reversibly potentiated by apigenin with an EC value of 5.4 µM in a voltage-independent manner.

View Article and Find Full Text PDF

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF

GABA receptor availability in clinical high-risk and first-episode psychosis: a [C]Ro15-4513 positron emission tomography study.

Mol Psychiatry

September 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.

Disrupted gamma-aminobutyric acid (GABA) neurotransmission may contribute to the pathophysiology of schizophrenia. Reductions in hippocampal GABAergic neurons have been found in schizophrenia, and increased hippocampal perfusion has been described in schizophrenia and in people at clinical high-risk for psychosis (CHRp). We have also found decreases in hippocampal GABA receptors containing the α5 subunit (GABARα5) in a well-validated neurodevelopmental rat model of relevance for schizophrenia.

View Article and Find Full Text PDF

Recent advances in computational strategies for allosteric site prediction: Machine learning, molecular dynamics, and network-based approaches.

Drug Discov Today

September 2025

Department of Pharmaceutical and Artificial-Intelligence Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Cen

The landscape of allosteric drug discovery is undergoing a transformative shift, driven by the integration of three computational approaches: machine learning (ML), molecular dynamics (MD) simulations, and network theory. ML identifies potential allosteric sites from multidimensional biological datasets; MD simulations, empowered by enhanced sampling algorithms, reveal transient conformational states; and network analyses uncover communication pathways, further aiding in site identification. Their synergy enables rational allosteric modulator design.

View Article and Find Full Text PDF